Finite groups with Quaternion Sylow subgroup

In this paper we show that a finite group $G$ with Quaternion Sylow $2$-subgroup is $2$-nilpotent if, either $3\nmid |G|$ or $G$ is solvable and the order of its Sylow $2$-subgroup is strictly greater than $16$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2021, Vol.358 (9-10), p.1097-1099
1. Verfasser: Mousavi, Hamid
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that a finite group $G$ with Quaternion Sylow $2$-subgroup is $2$-nilpotent if, either $3\nmid |G|$ or $G$ is solvable and the order of its Sylow $2$-subgroup is strictly greater than $16$.
ISSN:1778-3569
1778-3569
DOI:10.5802/crmath.131