Finite groups with Quaternion Sylow subgroup
In this paper we show that a finite group $G$ with Quaternion Sylow $2$-subgroup is $2$-nilpotent if, either $3\nmid |G|$ or $G$ is solvable and the order of its Sylow $2$-subgroup is strictly greater than $16$.
Gespeichert in:
Veröffentlicht in: | Comptes rendus. Mathématique 2021, Vol.358 (9-10), p.1097-1099 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that a finite group $G$ with Quaternion Sylow $2$-subgroup is $2$-nilpotent if, either $3\nmid |G|$ or $G$ is solvable and the order of its Sylow $2$-subgroup is strictly greater than $16$. |
---|---|
ISSN: | 1778-3569 1778-3569 |
DOI: | 10.5802/crmath.131 |