Role of Sterically Bulky Azobenzenes in the Molecular Assembly of Pyrene Derivatives: Rectangular Sheet-like Structures and Their Emission Characteristics
The development of pyrene-based fluorescent assembled systems with desirable emission characteristics by reducing conventional concentration quenching and/or aggregation-induced quenching (ACQ) is highly desirable. In this investigation, we designed a new azobenzene-functionalized pyrene derivative...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2023-02, Vol.24 (5), p.4504 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of pyrene-based fluorescent assembled systems with desirable emission characteristics by reducing conventional concentration quenching and/or aggregation-induced quenching (ACQ) is highly desirable. In this investigation, we designed a new azobenzene-functionalized pyrene derivative (AzPy) in which sterically bulky azobenzene is linked to pyrene. Absorption and fluorescence spectroscopic results before and after molecular assembly indicate that even in a dilute N,N-dimethylformamide (DMF) solution (~10 μM), AzPy molecules experienced significant concentration quenching, whereas the emission intensities of AzPy DMF-H
O turbid suspensions containing self-assembled aggregates were slightly enhanced and showed similar values regardless of the concentration. The shape and size of sheet-like structures, from incomplete flakes less than one micrometer in size to well-completed rectangular microstructures, could be adjusted by changing the concentration. Importantly, such sheet-like structures exhibit concentration dependence of their emission wavelength from blue to yellow-orange. Comparison with the precursor (PyOH) demonstrates that the introduction of a sterically twisted azobenzene moiety plays an important role in converting the spatial molecular arrangements from H- to J-type aggregation mode. Thus, AzPy chromophores grow into anisotropic microstructures through inclined J-type aggregation and high crystallinity, which are responsible for their unexpected emission characteristics. Our findings provide useful insight into the rational design of fluorescent assembled systems. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24054504 |