MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology 2023-10, Vol.24 (1), p.231-231, Article 231
Hauptverfasser: Wang, Chengqi, Dong, Yibo, Li, Chang, Oberstaller, Jenna, Zhang, Min, Gibbons, Justin, Pires, Camilla Valente, Xiao, Mianli, Zhu, Lei, Jiang, Rays H Y, Kim, Kami, Miao, Jun, Otto, Thomas D, Cui, Liwang, Adams, John H, Liu, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites.
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-023-03063-z