Improving Outdoor Thermal Comfort for Elderly in Residential Complexes

One of the crucial factors for the presence of more people outdoors is to create comfortable conditions. This issue is significant for the elderly due to the different physical conditions. The purpose of this study is to improve the micro-climatic condition around residential complexes considering t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranica journal of energy & environment 2022, Vol.13 (1), p.55-70
Hauptverfasser: Samadpour Shahrak, E., Sattari Sarbangholi, H., Moosavi, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the crucial factors for the presence of more people outdoors is to create comfortable conditions. This issue is significant for the elderly due to the different physical conditions. The purpose of this study is to improve the micro-climatic condition around residential complexes considering the elderly in a linear type. For this purpose, two physical indicators, the ratio of the height of buildings to their distance from each other (H/D) and the orientation of them towards the street, were investigated. Regarding H/D, ratios of 0.5, 1, 1.5, and 2, and about the orientation factor, angles of 135° to 200° were examined. This study was conducted outdoors around residential complexes in Iran, Tabriz, with a cold semi-arid climate. Envi-met software model 4.4.5 was used for the simulation. The days June 22 and December 22, 2020 were selected as one of the hottest and coldest day of the year. Two indexes of the Predicted Mean Vote (PMV) and the Universal Thermal Climate Index (UTCI) were examined as essential thermal comfort indexes. Also, for validation, local and field data in six days (21, 22, 23 June in summer and 21, 22, 23 December in winter) were extracted and compared with the data of the software. The results display, the ratio of H/D=1.5 and the angles of 135° and 145° were the most suitable comfort conditions.
ISSN:2079-2115
2079-2123
DOI:10.5829/IJEE.2022.13.01.07