Application of the convolutional neural network in partial discharge spectrum recognition of power apparatus

Partial discharge (PD) detection is used to evaluate the insulation status of high‐voltage equipment. The most challenging aspect of traditional PD recognition is extracting features from the discharge signal. Accordingly, this study applied the visual geometry group‐19 (VGG‐19) model to gas‐insulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET science, measurement & technology measurement & technology, 2023-06, Vol.17 (4), p.137-146
1. Verfasser: Gu, Feng‐Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partial discharge (PD) detection is used to evaluate the insulation status of high‐voltage equipment. The most challenging aspect of traditional PD recognition is extracting features from the discharge signal. Accordingly, this study applied the visual geometry group‐19 (VGG‐19) model to gas‐insulated switchgear (GIS) PD image recognition. A high frequency current transformer and an LDP‐5 inductive sensor measured PD electrical signals emitted by 15‐kV GIS. Next, the Hilbert energy spectrum was obtained by Hilbert transform in the time and frequency domains. Compared with a phase‐resolved PD pattern, the Hilbert spectrum can represent the energy and instantaneous frequency with the time variable. Finally, the VGG‐19 model was applied for PD pattern recognition. For validation, its recognition performance was compared with that of a fractal theory by using a neural network method. The VGG‐19 method is straightforward and has a high PD recognition rate, thereby enabling equipment manufacturers to quickly verify the insulation of GIS during assembly or operation.
ISSN:1751-8822
1751-8830
DOI:10.1049/smt2.12137