Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application

The fundamental characteristics of nanoparticle (NP) deposition of the fluoropolymer CYTOP using a femtosecond (fs) laser were investigated. In previous studies, we have demonstrated the microfluidic fabrication of CYTOP, which enables clear microscopic observation of the fluid boundary because of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-10, Vol.10 (20), p.7243
Hauptverfasser: Ozaki, Ryo, Ishida, Kotaro, Morita, Eiji, Hanada, Yasutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fundamental characteristics of nanoparticle (NP) deposition of the fluoropolymer CYTOP using a femtosecond (fs) laser were investigated. In previous studies, we have demonstrated the microfluidic fabrication of CYTOP, which enables clear microscopic observation of the fluid boundary because of its low refractive index, as well as that of water. In the present work, we generated CYTOP NPs using holographic fs laser processing with a spatial light modulator to demonstrate the capabilities of this functional polymer. We established a deposition technique via five-dot parallel fs laser beam irradiation for fibrous network and monolayer structures composed of CYTOP NPs on the surface of glass slides by manipulating the various fundamental laser processing parameters. The network structure on the glass surface exhibits superhydrophobic behavior, while the monolayer structure performs almost the same wettability as that of CYTOP thin film. After an investigation of the surface features of the NPs deposited onto the glass, the combination of the holographic fs laser deposition and the removal of CYTOP NPs was used to selectively pattern CYTOP NPs on the glass slide for HeLa cell culturing. Consequently, cells were selectively cultured on the glass surface where the laser removal of deposited NPs was carried out.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10207243