Wasserstein Generative Adversarial Network Based De-Blurring Using Perceptual Similarity

The de-blurring of blurred images is one of the most important image processing methods and it can be used for the preprocessing step in many multimedia and computer vision applications. Recently, de-blurring methods have been performed by neural network methods, such as the generative adversarial n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019-06, Vol.9 (11), p.2358
Hauptverfasser: Hong, Minsoo, Choe, Yoonsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The de-blurring of blurred images is one of the most important image processing methods and it can be used for the preprocessing step in many multimedia and computer vision applications. Recently, de-blurring methods have been performed by neural network methods, such as the generative adversarial network (GAN), which is a powerful generative network. Among many different types of GAN, the proposed method is performed using the Wasserstein generative adversarial network with gradient penalty (WGANGP). Since edge information is the most important factor in an image, the style loss function is applied to represent the perceptual information of the edge in order to preserve small edge information and capture its perceptual similarity. As a result, the proposed method improves the similarity between sharp and blurred images by minimizing the Wasserstein distance, and it captures well the perceptual similarity using the style loss function, considering the correlation of features in the convolutional neural network (CNN). To confirm the performance of the proposed method, three experiments are conducted using two datasets: the GOPRO Large and Kohler dataset. The optimal solutions are found by changing the parameter values experimentally. Consequently, the experiments depict that the proposed method achieves 0.98 higher performance in structural similarity (SSIM) and outperforms other de-blurring methods in the case of both datasets.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9112358