Influence of Technology Process on Responsiveness of Footwear Nonwovens

Nonwovens represent a part of technical textiles that are used for clothing (“cloth tech”). Nonwovens are also used in the footwear industry mainly for functional purposes, where the aesthetic properties are not of great importance. They are mainly used for support and reinforcement of footwear. All...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AUTEX Research Journal 2020-12, Vol.20 (4), p.539-551
Hauptverfasser: Gorjanc, Dunja Šajn, Bras, Ana, Novak, Boštjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonwovens represent a part of technical textiles that are used for clothing (“cloth tech”). Nonwovens are also used in the footwear industry mainly for functional purposes, where the aesthetic properties are not of great importance. They are mainly used for support and reinforcement of footwear. All three groups of textiles are used for footwear, i.e. woven fabrics, knitted fabrics and nonwovens that are produced directly from fibres, yarns or threads mainly from chemical fibres and in a small proportion from natural fibres. Footwear textiles need to have good mechanical properties (at compressive loading), abrasion resistance, permeability properties and heat resistance. These properties are in close connection with the nonwoven structure or composite materials. The basic intention of the presented research was to analyse the influence of the technology process on nonwovens for footwear responsiveness. Analysed footwear nonwovens in the presented research were on one side coated but on the other side consisted of a two-layer laminate. For this purpose, two different technological processes were used (coating and lamination). The results of the presented research showed that laminated samples express higher elastic recovery at compressive loading than coated samples. The treatment does not have an important influence on elastic recovery at compressive loading. Laminated samples express higher water permeability and lower absorption of water than coated samples, even after 24 hours of treatment in distilled water and compressive loading. The treatment of specimens in distilled water for 24 hours and compressive load of 789.6 N does not have an important influence on elastic recovery at compressive loading, water vapour permeability, air permeability and absorption of analysed samples. Air permeability could not be measured on coated samples.
ISSN:2300-0929
1470-9589
2300-0929
DOI:10.2478/aut-2019-0053