Hotel demand forecasting models and methods using artificial intelligence: A systematic literature review
This systematic literature review (SLR) explores current state-of-the-art artificial intelligence (AI) methods for forecasting hotel demand. Since revenue management (RM) is crucial for business success in the hotel industry, this study aims to identify state-of-the-art effective AI-based solutions...
Gespeichert in:
Veröffentlicht in: | Tourism & management studies 2024-01, Vol.20 (3), p.39-51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This systematic literature review (SLR) explores current state-of-the-art artificial intelligence (AI) methods for forecasting hotel demand. Since revenue management (RM) is crucial for business success in the hotel industry, this study aims to identify state-of-the-art effective AI-based solutions for hotel demand forecasting, including machine learning (ML), deep learning (DP), and artificial neural networks (ANNs). The study conducted an SLR using the PRISMA model and identified 20 papers indexed in Scopus and the Web of Science. It addresses the gaps in the literature on AI-based demand forecasting, highlighting the need for clarity in model specification, understanding the impact of AI on pricing accuracy and financial performance, and the challenges of available data quality and computational expertise. The review concludes that AI technology can significantly improve forecasting accuracy and empower data-driven decisions in hotel management. Additionally, this study discusses the limitations of AI-based demand forecasting, such as the need for high-quality data. It also suggests future research directions for further enhancing AI forecasting techniques in the hospitality industry. |
---|---|
ISSN: | 2182-8466 2182-8458 2182-8466 |
DOI: | 10.18089/tms.20240304 |