Inventario y cartografia de variables del bosque con datos derivados de LiDAR: comparacion de metodos

El método más común para estimar variables dasométricas a gran o pequeña escala es el inventario forestal basado en un muestreo en campo. En la actualidad la teledetección ofrece un abanico de posibilidades para incorporarse en las estimaciones forestales, tal es el caso de LiDAR (Light Detection An...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Madera y bosques 2015-09, Vol.21 (3), p.111-128
Hauptverfasser: Ortiz-Reyes, Alma Delia, Valdez-Lazalde, J. René, De los Santos-Posadas, Héctor M, Ángeles-Pérez, Gregorio, Paz-Pellat, Fernando, Martínez-Trinidad, Tomás
Format: Artikel
Sprache:spa
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:El método más común para estimar variables dasométricas a gran o pequeña escala es el inventario forestal basado en un muestreo en campo. En la actualidad la teledetección ofrece un abanico de posibilidades para incorporarse en las estimaciones forestales, tal es el caso de LiDAR (Light Detection And Ranging) que permite caracterizar de forma tridimensional el bosque. En este trabajo se estudió la relación entre datos derivados de LiDAR con los datos medidos en campo para estimar variables dasométricas como: área basal (AB), biomasa total (BT), cobertura arbórea (COB) y volumen de madera (VOL), mediante cuatro métodos: 1) regresión lineal múltiple, 2) regresión no lineal, 3) estimador de razón y 4) inventario forestal tradicional (muestreo estratificado). Las estimaciones totales derivadas del estimador de razón se encuentran dentro del intervalo de confianza al 95% calculado mediante inventario tradicional para AB, BT y VOL, siendo este el estimador que arroja los valores más cercanos y precisos a la estimación mediante inventario. En general, las estimaciones de los modelos no lineales fueron los más optimistas con respecto al inventario tradicional. Los resultados indican una buena relación ([R.sup.2] > 0.50) entre las métricas de LiDAR y datos de campo, principalmente los percentiles de altura y las tasas de retorno sobre una altura definida. A partir de los modelos lineales, se generó la cartografía de cada una de las variables analizadas.
ISSN:1405-0471