Steady state models provide an invalid estimate of intermittent resistance-exercise energy costs

The prototype modeling of biological energy exchange invokes per minute measurements of oxygen uptake (l min-1), including exercise. While dedicated to steady rate power outputs, the oxygen uptake rate function model is now appropriated to intermittent exercise as well with resistance training servi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Motricidad (Granada) 2014 (33), p.70-78
Hauptverfasser: Machado de Ribeiro dos Reis, Victor Manuel, Scott, Christopher B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The prototype modeling of biological energy exchange invokes per minute measurements of oxygen uptake (l min-1), including exercise. While dedicated to steady rate power outputs, the oxygen uptake rate function model is now appropriated to intermittent exercise as well with resistance training serving as a primary example. Resistance training energy costs as described here are not properly portrayed by steady state oxygen uptake models - indeed, such application lacks validity. We instead suggest that the energy costs of brief, intense, intermittent exercise should be quantified in the context of a capacity estimate, where a bout of exercise and/or amount of work (J) completed is associated with a specific energy cost (kJoules). For resistance exercise, we propose linear models that measure work and energy bouts as an alternative to the steady state rate model.
ISSN:0214-0071
2172-2862