Design of elliptic curve cryptoprocessors over GF(2^163) using the Gaussian normal basis
This paper presents the efficient hardware implementation of cryptoprocessors that carry out the scalar multiplication kP over finite field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using Gaussian normal basis (GNB) representation, and the sc...
Gespeichert in:
Veröffentlicht in: | Ingeniería e Investigación 2014, Vol.34 (2), p.55-65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the efficient hardware implementation of cryptoprocessors that carry out the scalar multiplication kP over finite field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using Gaussian normal basis (GNB) representation, and the scalar multiplication kP was implemented using Lopez-Dahab algorithm, 2-NAF halve-and-add algorithm and w-tNAF method for Koblitz curves. The processors were designed using VHDL description, synthesized on the Stratix-IV FPGA using Quartus II 12.0 and verified using SignalTAP II and Matlab. The simulation results show that the cryptoprocessors present a very good performance to carry out the scalar multiplication kP. In this case, the computation times of the multiplication kP using Lopez-Dahab, 2-NAF halve-and-add and 16-tNAF for Koblitz curves were 13.37 µs, 16.90 µs and 5.05 µs, respectively.
En este trabajo se presenta la implementación eficiente en hardware de criptoprocesadores que permiten llevar a cabo la multiplicación escalar kP sobre el campo finito GF(2163) usando dos multiplicadores a nivel de digito. Las operaciones aritméticas de campo finito fueron implementadas usando la representación de bases normales Gaussianas (GNB), y la multiplicación escalar kP fue implementada usando el algoritmo de López-Dahab, el algoritmo de bisección de punto 2-NAF y el método w-tNAF para curvas de Koblitz. Los criptoprocesadores fueron diseñados usando descripción VHDL, sintetizados en el FPGA Stratix-IV usando Quartus II 12.0 y verificados usando SignalTAP II y Matlab. Los resultados de simulación muestran que los criptoprocesadores presentan un muy buen desempeño para llevar a cabo la multiplicación escalar kP. En este caso, los tiempos de computo de la multiplicación kP usando Lopez-Dahab, bisección de punto 2-NAF y 16-tNAF para curvas de Koblitz fueron 13.37 µs, 16.90 µs and 5.05 µs, respectivamente. |
---|---|
ISSN: | 0129-5608 |