The Bounded Approximation Property for Weakly Uniformly Continuous Type Holomorphic Mappings
When U is a balanced open subset of a reflexive Banach space E with P(nE) = Pw(nE) for every positive integer n, we show that the predual of the space of weakly uniformly continuous holomorphic mappings on U, Gwu(U), has the bounded approximation property if and only if E has the bounded approximati...
Gespeichert in:
Veröffentlicht in: | Extracta mathematicae 2007, Vol.22 (2), p.157-177 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When U is a balanced open subset of a reflexive Banach space E with P(nE) =
Pw(nE) for every positive integer n, we show that the predual of the space of weakly uniformly
continuous holomorphic mappings on U, Gwu(U), has the bounded approximation
property if and only if E has the bounded approximation property if and only if P(nE) has
the bounded approximation property for every positive integer n. An analogous result is
established for the predual of the space of holomorphic mappings of bounded type also. |
---|---|
ISSN: | 0213-8743 2605-5686 |