The Bounded Approximation Property for Weakly Uniformly Continuous Type Holomorphic Mappings

When U is a balanced open subset of a reflexive Banach space E with P(nE) = Pw(nE) for every positive integer n, we show that the predual of the space of weakly uniformly continuous holomorphic mappings on U, Gwu(U), has the bounded approximation property if and only if E has the bounded approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extracta mathematicae 2007, Vol.22 (2), p.157-177
1. Verfasser: CALISKAN, Erhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When U is a balanced open subset of a reflexive Banach space E with P(nE) = Pw(nE) for every positive integer n, we show that the predual of the space of weakly uniformly continuous holomorphic mappings on U, Gwu(U), has the bounded approximation property if and only if E has the bounded approximation property if and only if P(nE) has the bounded approximation property for every positive integer n. An analogous result is established for the predual of the space of holomorphic mappings of bounded type also.
ISSN:0213-8743
2605-5686