On the free character of the first koszul homology module

Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extracta mathematicae 1991, Vol.6 (2-3), p.126-128
1. Verfasser: Rodicio, Antonio G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 2-3
container_start_page 126
container_title Extracta mathematicae
container_volume 6
creator Rodicio, Antonio G
description Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance: - (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module. - (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module. The purpose of this note is to generalize both results.
format Article
fullrecord <record><control><sourceid>dialnet_latin</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000162736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_dialnet_unirioja_es_ART0000162736</sourcerecordid><originalsourceid>FETCH-LOGICAL-d899-90b73826fbb65ed5789a8f4ec7457a059fe60ce201dc57f9b7b4fd782f27abe33</originalsourceid><addsrcrecordid>eNpVjMtKxDAYRoMoWEffIXsppElzAzfD4A0GBqT7kssfm7FtJG3B8ekdqC78Nh8cOOcCFVQQXnKhxCUqCK1YqWTNrtHNNB0JEZrqukD6MOK5AxwyAHadycbNkHEKK415mvFHmr6XHndpSH16P-Eh-aWHW3QVTD_B3e9vUPP02Oxeyv3h-XW33ZdeaV1qYiVTVARrBQfPpdJGhRqcrLk0hOsAgjigpPKOy6CttHXwUtFApbHA2AY9rFkfTT_C3H7mOJh8apOJ7R9bxphjOpoWpnb71pDzKkElE2f9ftV7M8cxjh6-_hUyuJR9WxNGhWY_27Nc2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the free character of the first koszul homology module</title><source>Dialnet</source><source>DOAJ Directory of Open Access Journals</source><creator>Rodicio, Antonio G</creator><creatorcontrib>Rodicio, Antonio G</creatorcontrib><description>Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance: - (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module. - (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module. The purpose of this note is to generalize both results.</description><identifier>ISSN: 0213-8743</identifier><identifier>EISSN: 2605-5686</identifier><language>eng</language><publisher>Universidad de Extremadura: Departamento de Matemáticas</publisher><subject>Algebras conmutativas ; Anillo local Noetheriano ; Métodos homológicos</subject><ispartof>Extracta mathematicae, 1991, Vol.6 (2-3), p.126-128</ispartof><rights>free</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,870,881,882,4010</link.rule.ids></links><search><creatorcontrib>Rodicio, Antonio G</creatorcontrib><title>On the free character of the first koszul homology module</title><title>Extracta mathematicae</title><description>Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance: - (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module. - (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module. The purpose of this note is to generalize both results.</description><subject>Algebras conmutativas</subject><subject>Anillo local Noetheriano</subject><subject>Métodos homológicos</subject><issn>0213-8743</issn><issn>2605-5686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>FKZ</sourceid><recordid>eNpVjMtKxDAYRoMoWEffIXsppElzAzfD4A0GBqT7kssfm7FtJG3B8ekdqC78Nh8cOOcCFVQQXnKhxCUqCK1YqWTNrtHNNB0JEZrqukD6MOK5AxwyAHadycbNkHEKK415mvFHmr6XHndpSH16P-Eh-aWHW3QVTD_B3e9vUPP02Oxeyv3h-XW33ZdeaV1qYiVTVARrBQfPpdJGhRqcrLk0hOsAgjigpPKOy6CttHXwUtFApbHA2AY9rFkfTT_C3H7mOJh8apOJ7R9bxphjOpoWpnb71pDzKkElE2f9ftV7M8cxjh6-_hUyuJR9WxNGhWY_27Nc2Q</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Rodicio, Antonio G</creator><general>Universidad de Extremadura: Departamento de Matemáticas</general><general>Universidad de Extremadura: Servicio de Publicaciones</general><scope>77F</scope><scope>AGMXS</scope><scope>FKZ</scope></search><sort><creationdate>1991</creationdate><title>On the free character of the first koszul homology module</title><author>Rodicio, Antonio G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d899-90b73826fbb65ed5789a8f4ec7457a059fe60ce201dc57f9b7b4fd782f27abe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Algebras conmutativas</topic><topic>Anillo local Noetheriano</topic><topic>Métodos homológicos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodicio, Antonio G</creatorcontrib><collection>Latindex</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Extracta mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodicio, Antonio G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the free character of the first koszul homology module</atitle><jtitle>Extracta mathematicae</jtitle><date>1991</date><risdate>1991</risdate><volume>6</volume><issue>2-3</issue><spage>126</spage><epage>128</epage><pages>126-128</pages><issn>0213-8743</issn><eissn>2605-5686</eissn><abstract>Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance: - (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module. - (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module. The purpose of this note is to generalize both results.</abstract><pub>Universidad de Extremadura: Departamento de Matemáticas</pub><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0213-8743
ispartof Extracta mathematicae, 1991, Vol.6 (2-3), p.126-128
issn 0213-8743
2605-5686
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0000162736
source Dialnet; DOAJ Directory of Open Access Journals
subjects Algebras conmutativas
Anillo local Noetheriano
Métodos homológicos
title On the free character of the first koszul homology module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dialnet_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20free%20character%20of%20the%20first%20koszul%20homology%20module&rft.jtitle=Extracta%20mathematicae&rft.au=Rodicio,%20Antonio%20G&rft.date=1991&rft.volume=6&rft.issue=2-3&rft.spage=126&rft.epage=128&rft.pages=126-128&rft.issn=0213-8743&rft.eissn=2605-5686&rft_id=info:doi/&rft_dat=%3Cdialnet_latin%3Eoai_dialnet_unirioja_es_ART0000162736%3C/dialnet_latin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true