On the free character of the first koszul homology module
Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance...
Gespeichert in:
Veröffentlicht in: | Extracta mathematicae 1991, Vol.6 (2-3), p.126-128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I.
The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance:
- (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module.
- (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module.
The purpose of this note is to generalize both results. |
---|---|
ISSN: | 0213-8743 2605-5686 |