On the free character of the first koszul homology module

Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extracta mathematicae 1991, Vol.6 (2-3), p.126-128
1. Verfasser: Rodicio, Antonio G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (A,M,K) denote a local noetherian ring A with maximal ideal M and residue field K. Let I be an ideal of A and E the Koszul complex generated over A by a system of generators of I. The condition: H1(E) is a free A/I-module, appears in several important results of Commutative Algebra. For instance: - (Gulliksen [3, Proposition 1.4.9]): The ideal I is generated by a regular sequence if and only if I has finite projective dimension and H1(E) is a free A/I-module. - (André [2]): Assume that A is a complete intersection. Then, A/I is complete intersection if and only if H1(E)2 = H2(E) and H1(E) is a free module. The purpose of this note is to generalize both results.
ISSN:0213-8743
2605-5686