Replication Data for: Active Maintenance: A Proposal for the Long-term Computational Reproducibility of Scientific Results

Computational reproducibility, or the ability to reproduce analytic results of a scientific study on the basis of publicly available code and data, is a shared goal of many researchers, journals, and scientific communities. Researchers in many disciplines including political science have made stride...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Orr, Lilla, Coppock, Alexander
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational reproducibility, or the ability to reproduce analytic results of a scientific study on the basis of publicly available code and data, is a shared goal of many researchers, journals, and scientific communities. Researchers in many disciplines including political science have made strides toward realizing that goal. A new challenge, however, has arisen. Code too often becomes obsolete within just a few years. We document this problem with a random sample of studies posted to the ISPS Data Archive; we encountered nontrivial errors in seven of 20 studies. In line with similar proposals for the long-term maintenance of data and commercial software, we propose that researchers dedicated to computational reproducibility should have a plan in place for "active maintenance" of their analysis code. We offer concrete suggestions for how data archives, journals, and research communities could encourage and reward the active maintenance of scientific code and data.
DOI:10.7910/dvn/jllfgk