Realization of thousand-second improved confinement plasma with Super I-mode in Tokamak EAST
Mastering nuclear fusion, which is an abundant, safe, and environmentally competitive energy, is a great challenge for humanity. Tokamak represents one of the most promising paths toward controlled fusion. Obtaining a high-performance, steady-state, and long-pulse plasma regime remains a critical is...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mastering nuclear fusion, which is an abundant, safe, and environmentally competitive energy, is a great challenge for humanity. Tokamak represents one of the most promising paths toward controlled fusion. Obtaining a high-performance, steady-state, and long-pulse plasma regime remains a critical issue. Recently, a big breakthrough in steady-state operation was made on the Experimental Advanced Superconducting Tokamak (EAST). A steady-state plasma with a world-record pulse length of 1056 s was obtained, where the density and the divertor peak heat flux were well controlled, with no core impurity accumulation, and a new high-confinement and self-organizing regime (Super I-mode = I-mode + e-ITB) was discovered and demonstrated. These achievements contribute to the integration of fusion plasma technology and physics, which is essential to operate nextstep devices. |
---|---|
DOI: | 10.7910/dvn/e9wkl7 |