Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic
Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while mai...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration. |
---|---|
DOI: | 10.7910/dvn/clovwc |