Carbon and water cycle analysis across global permafrost domain
The CARDAMOM model-data fusion (MDF) software was used to generate an analysis (0.5x0.5 degree, 2001-2019, monthly time step) of the carbon (C) and water (H2O) cycles across the global terrestrial permafrost regions. CARDAMOM used time series information on leaf area index, total woody biomass, net...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The CARDAMOM model-data fusion (MDF) software was used to generate an analysis (0.5x0.5 degree, 2001-2019, monthly time step) of the carbon (C) and water (H2O) cycles across the global terrestrial permafrost regions. CARDAMOM used time series information on leaf area index, total woody biomass, net biome exchange of CO2 and a prior in the initial value of soil C stocks, to train an intermediate complexity model of the terrestrial ecosystem (DALEC4). CARDAMOM retrieves ensembles of parameters are estimates for DALEC4 uniquely for each pixel within the analysis domain, from these ensembles the uncertainty associated with analysis can be directly quantified. Permafrost domain defined under the RECCAP2 definition (https://www.globalcarbonproject.org/reccap/, accessed 22/08/2023). The analysis output includes uncertainty bounded estimates of ecosystem gross fluxes (e.g. photosynthesis, plant respiration, decomposition and fire), C stocks (labile, foliage, wood, fine roots, litter and soil) and their internal dynamics (e.g. allocation fractions of photosynthate and tissue mortality). The dataset relates to the upcoming publication Smallman, T.L., Williams, M. (in submission). 'Two decades of permafrost region CO2, CH4, and N2O budgets suggest a small net greenhouse gas source to the atmosphere. Permafrost region budgets of greenhouse gases and lateral fluxes of carbon and nitrogen for the years 2000-2020 based on bottom-up and top-down approaches'. |
---|---|
DOI: | 10.7488/ds/7505 |