In vitro toxicity assessment of emitted materials collected during the manufacture of water pipe plastic linings

Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kobos, Lisa, Seyedeh Mahboobeh Teimouri Sendesi, Whelton, Andrew J., Boor, Brandon E., Howarter, John A., Shannahan, Jonathan
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damaged pipe. The CIPP process can release materials resulting in occupational and public health concerns. To understand hazards associated with CIPP-related emission exposures, an in vitro toxicity assessment was performed. Materials and Methods: Mouse alveolar epithelial and alveolar macrophage cell lines and condensates collected at 3 worksites utilizing styrene-based resins were utilized for evaluations. All condensate samples were normalized based on the major emission component, styrene. Further, a styrene-only exposure group was used as a control to determine mixture related toxicity. Results: Cytotoxicity differences were observed between worksite samples, with the CIPP worksite 4 sample inducing the most cell death. A proteomic evaluation was performed, which demonstrated styrene-, worksite-, and cell-specific alterations. This examination of protein expression changes determined potential biomarkers of exposure including transglutaminase 2, advillin, collagen type 1, perilipin-2, and others. Pathway analysis of exposure-induced proteomic alterations identified MYC and p53 to be regulators of cellular responses. Protein changes were also related to pathways involved in cell damage, immune response, and cancer. Conclusions: Together these findings demonstrate potential risks associated with the CIPP procedure as well as variations between worksites regarding emissions and toxicity. Our evaluation identified biological pathways that require a future evaluation and also demonstrates that exposure assessment of CIPP worksites should examine multiple chemical components beyond styrene, as many cellular responses were styrene-independent.
DOI:10.6084/m9.figshare.9907376