Bentonite addition to a PCB-contaminated sandy soil improved the growth and phytoremediation efficiency of Zea mays L. and Alternanthera sessilis L
In this study, the removal of 17 selected PCBi congeners was assessed in a transformer oil-contaminated soil amended with bentonite clay powder applied at the three levels of 0, 2, and 4% and cultivated by Zea mays L. or Alternanthera sessilis L. in a pot experiment. Results showed that Z. mays and...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the removal of 17 selected PCBi congeners was assessed in a transformer oil-contaminated soil amended with bentonite clay powder applied at the three levels of 0, 2, and 4% and cultivated by Zea mays L. or Alternanthera sessilis L. in a pot experiment. Results showed that Z. mays and A. sessilis were able to reduce the residual concentrations of the PCBi congeners in the contaminated soil significantly (p i due to Z. mays or A. sessilis cultivations were 34.3 and 21.4%, respectively, depending on initial soil ƩPCBi loading and plant growth period. Moreover, addition of bentonite led to significant (p i congeners under Z. mays and A. sessilis cultivations. Addition of 4% bentonite to the soil was found to have the greatest positive impact on PCBi removal so that average PCBi dissipations in the soil were 56.1 and 51.8% after growing Z. mays and A. sessilis, respectively. It might be concluded that the combined phytoremediation and bentonite addition is an effective technique for removing PCBi and remediating transformer oil-contaminated coarse-textured soils. |
---|---|
DOI: | 10.6084/m9.figshare.9675782 |