Obtaining hydrochar via hydrothermal carbonization of Magonia pubescens A. St. Hil. Sapindaceae fruit bark: Characterization and evaluation of its adsorptive properties
ABSTRACT The hydrothermal carbonization (HTC) of bark of the fruit of Magonia pubescens A. St. Hil. Sapindaceae (Tingui do Cerrado) presents as an unprecedented proposal for the production of hydrochars from precursors of Brazilian Cerrado species, where the influence of temperature on the propertie...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT The hydrothermal carbonization (HTC) of bark of the fruit of Magonia pubescens A. St. Hil. Sapindaceae (Tingui do Cerrado) presents as an unprecedented proposal for the production of hydrochars from precursors of Brazilian Cerrado species, where the influence of temperature on the properties of the obtained materials is verified. The obtained hydrochar were characterized in terms of yield, elemental analysis, estimation of the higher calorific value, infrared spectroscopy, X-ray diffractometry, and methylene blue adsorption. The temperature increases affected negatively hydrochar yield, which varied between 46,25% and 27,42%, at temperatures of 170 and 190 °C, respectively. Hydrochar with higher carbon content (64,10%), higher calorific value (23,94 MJ kg-1) and specific surface area (44,0 m2 g-1) were obtained at 170 °C. The evolution of the atomic ratios H/C and O/C indicated processes of dehydration and decarboxylation during hydrothermal carbonization. The adsorption-desorption isotherms of N2 at -176º C resulting from the analysis of the textural and structural properties demonstrated the presence of mesopores in the structure of the hydrochars. In the evaluation of the adsorption capacity with methylene blue, the adsorption data correlated well with the Langmuir isotherm. In this analysis, the hydrochars obtained at 170 and 180 °C demonstrated the highest adsorption capacity (Qmax = 139,38 and 202,40 mg g-1, respectively). The results indicated the hydrothermal carbonization of the bark of the tingui fruit as a new strategy for the development of hydrochars with high yield, high carbon content and high adsorption efficiency, higher values than several papers found in the literature. |
---|---|
DOI: | 10.6084/m9.figshare.8259482 |