Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers

Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: C.D.C. Neves, A.C.R. Lacerda, L.P. Lima, V.K.S. Lage, C.H. Balthazar, H.R. Leite, V.A. Mendonça
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.
DOI:10.6084/m9.figshare.7899347