Accuracy of genomic selection predictions for hip height in Brahman cattle using different relationship matrices

The objective of this work was to evaluate the effects of genomic information on the genetic evaluation of hip height in Brahman cattle using different matrices built from genomic and pedigree data. Hip height measurements from 1,695 animals, genotyped with high-density SNP chip or imputed from 50 K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farah, Michel Marques, Fortes, Marina Rufino Salinas, Kelly, Matthew, Laercio Ribeiro Porto-Neto, Meira, Camila Tangari, Carreño, Luis Orlando Duitama, Fonseca, Ricardo Da, Moore, Stephen Stewart
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this work was to evaluate the effects of genomic information on the genetic evaluation of hip height in Brahman cattle using different matrices built from genomic and pedigree data. Hip height measurements from 1,695 animals, genotyped with high-density SNP chip or imputed from 50 K high-density SNP chip, were used. The numerator relationship matrix (NRM) was compared with the H matrix, which incorporated the NRM and genomic relationship (G) matrix simultaneously. The genotypes were used to estimate three versions of G: observed allele frequency (HGOF), average minor allele frequency (HGMF), and frequency of 0.5 for all markers (HG50). For matrix comparisons, animal data were either used in full or divided into calibration (80% older animals) and validation (20% younger animals) datasets. The accuracy values for the NRM, HGOF, and HG50 were 0.776, 0.813, and 0.594, respectively. The NRM and HGOF showed similar minor variances for diagonal and off-diagonal elements, as well as for estimated breeding values. The use of genomic information resulted in relationship estimates similar to those obtained based on pedigree; however, HGOF is the best option for estimating the genomic relationship matrix and results in a higher prediction accuracy. The ranking of the top 20% animals was very similar for all matrices, but the ranking within them varies depending on the method used.
DOI:10.6084/m9.figshare.7045757