Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3

Copyright information:Taken from "Epstein-Barr virus latency switch in human B-cells: a physico-chemical model"http://www.biomedcentral.com/1752-0509/1/40BMC Systems Biology 2007;1():40-40.Published online 31 Aug 2007PMCID:PMC2164963.t time zero the system is stable in latency I, with an E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Werner, Maria, Ernberg, Ingemar, Zou, JieZhi, Almqvist, Jenny, Aurell, Erik
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Werner, Maria
Ernberg, Ingemar
Zou, JieZhi
Almqvist, Jenny
Aurell, Erik
description Copyright information:Taken from "Epstein-Barr virus latency switch in human B-cells: a physico-chemical model"http://www.biomedcentral.com/1752-0509/1/40BMC Systems Biology 2007;1():40-40.Published online 31 Aug 2007PMCID:PMC2164963.t time zero the system is stable in latency I, with an EBNA-1 level of 850 molecules, and an Oct-2 level of 15000 molecules. Transition to latency III is induced by lowering the Oct-2 level to 10000, activating the C promoter. Reaching the stable latency III level of EBNA-1 proteins thereafter take a few days. Induced switching back to resting latency I state demands a distinct increase in Oct-2, minimum a 10 fold change (green solid line). The greater increase in Oct-2 molecules the faster the cell is switched back to a stable latency I level of EBNA-1. The green solid and dashed line illustrate two different scenarios of elevated Oct-2 levels, where the red solid and dashed line are the corresponding resulting EBNA-1 levels.
doi_str_mv 10.6084/m9.figshare.67091
format Image
fullrecord <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_67091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_67091</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_670913</originalsourceid><addsrcrecordid>eNqdzjEKwjAUgOEsDqIewO1dIDWhUq1jpeLk5B4eMTUPkrQkqdLbi6IXcPqnHz7G1lIUldhvN74uOroni9EU1U7Ucs4u7ZCyocAbjBEeFMcEDrMJeoL0pKwtUAA7egzQcG2cSwdAGOyUSPdcW-NJowPf34zj5ZLNOnTJrL5dMHlqr8czv2FGTdmoIZLHOCkp1NukfK1-JvUxlf88L2mmSSs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3</title><source>DataCite</source><creator>Werner, Maria ; Ernberg, Ingemar ; Zou, JieZhi ; Almqvist, Jenny ; Aurell, Erik</creator><creatorcontrib>Werner, Maria ; Ernberg, Ingemar ; Zou, JieZhi ; Almqvist, Jenny ; Aurell, Erik</creatorcontrib><description>Copyright information:Taken from "Epstein-Barr virus latency switch in human B-cells: a physico-chemical model"http://www.biomedcentral.com/1752-0509/1/40BMC Systems Biology 2007;1():40-40.Published online 31 Aug 2007PMCID:PMC2164963.t time zero the system is stable in latency I, with an EBNA-1 level of 850 molecules, and an Oct-2 level of 15000 molecules. Transition to latency III is induced by lowering the Oct-2 level to 10000, activating the C promoter. Reaching the stable latency III level of EBNA-1 proteins thereafter take a few days. Induced switching back to resting latency I state demands a distinct increase in Oct-2, minimum a 10 fold change (green solid line). The greater increase in Oct-2 molecules the faster the cell is switched back to a stable latency I level of EBNA-1. The green solid and dashed line illustrate two different scenarios of elevated Oct-2 levels, where the red solid and dashed line are the corresponding resulting EBNA-1 levels.</description><identifier>DOI: 10.6084/m9.figshare.67091</identifier><language>eng</language><publisher>figshare</publisher><subject>Cell Biology</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,1892</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.67091$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Werner, Maria</creatorcontrib><creatorcontrib>Ernberg, Ingemar</creatorcontrib><creatorcontrib>Zou, JieZhi</creatorcontrib><creatorcontrib>Almqvist, Jenny</creatorcontrib><creatorcontrib>Aurell, Erik</creatorcontrib><title>Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3</title><description>Copyright information:Taken from "Epstein-Barr virus latency switch in human B-cells: a physico-chemical model"http://www.biomedcentral.com/1752-0509/1/40BMC Systems Biology 2007;1():40-40.Published online 31 Aug 2007PMCID:PMC2164963.t time zero the system is stable in latency I, with an EBNA-1 level of 850 molecules, and an Oct-2 level of 15000 molecules. Transition to latency III is induced by lowering the Oct-2 level to 10000, activating the C promoter. Reaching the stable latency III level of EBNA-1 proteins thereafter take a few days. Induced switching back to resting latency I state demands a distinct increase in Oct-2, minimum a 10 fold change (green solid line). The greater increase in Oct-2 molecules the faster the cell is switched back to a stable latency I level of EBNA-1. The green solid and dashed line illustrate two different scenarios of elevated Oct-2 levels, where the red solid and dashed line are the corresponding resulting EBNA-1 levels.</description><subject>Cell Biology</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2011</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdzjEKwjAUgOEsDqIewO1dIDWhUq1jpeLk5B4eMTUPkrQkqdLbi6IXcPqnHz7G1lIUldhvN74uOroni9EU1U7Ucs4u7ZCyocAbjBEeFMcEDrMJeoL0pKwtUAA7egzQcG2cSwdAGOyUSPdcW-NJowPf34zj5ZLNOnTJrL5dMHlqr8czv2FGTdmoIZLHOCkp1NukfK1-JvUxlf88L2mmSSs</recordid><startdate>20111231</startdate><enddate>20111231</enddate><creator>Werner, Maria</creator><creator>Ernberg, Ingemar</creator><creator>Zou, JieZhi</creator><creator>Almqvist, Jenny</creator><creator>Aurell, Erik</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20111231</creationdate><title>Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3</title><author>Werner, Maria ; Ernberg, Ingemar ; Zou, JieZhi ; Almqvist, Jenny ; Aurell, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_670913</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cell Biology</topic><toplevel>online_resources</toplevel><creatorcontrib>Werner, Maria</creatorcontrib><creatorcontrib>Ernberg, Ingemar</creatorcontrib><creatorcontrib>Zou, JieZhi</creatorcontrib><creatorcontrib>Almqvist, Jenny</creatorcontrib><creatorcontrib>Aurell, Erik</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Werner, Maria</au><au>Ernberg, Ingemar</au><au>Zou, JieZhi</au><au>Almqvist, Jenny</au><au>Aurell, Erik</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3</title><date>2011-12-31</date><risdate>2011</risdate><abstract>Copyright information:Taken from "Epstein-Barr virus latency switch in human B-cells: a physico-chemical model"http://www.biomedcentral.com/1752-0509/1/40BMC Systems Biology 2007;1():40-40.Published online 31 Aug 2007PMCID:PMC2164963.t time zero the system is stable in latency I, with an EBNA-1 level of 850 molecules, and an Oct-2 level of 15000 molecules. Transition to latency III is induced by lowering the Oct-2 level to 10000, activating the C promoter. Reaching the stable latency III level of EBNA-1 proteins thereafter take a few days. Induced switching back to resting latency I state demands a distinct increase in Oct-2, minimum a 10 fold change (green solid line). The greater increase in Oct-2 molecules the faster the cell is switched back to a stable latency I level of EBNA-1. The green solid and dashed line illustrate two different scenarios of elevated Oct-2 levels, where the red solid and dashed line are the corresponding resulting EBNA-1 levels.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.67091</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier DOI: 10.6084/m9.figshare.67091
ispartof
issn
language eng
recordid cdi_datacite_primary_10_6084_m9_figshare_67091
source DataCite
subjects Cell Biology
title Epstein-Barr virus latency switch in human B-cells: a physico-chemical model-3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Werner,%20Maria&rft.date=2011-12-31&rft_id=info:doi/10.6084/m9.figshare.67091&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_67091%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true