Gauging flow velocity in 2 positions for discharge calculation in pipes
ABSTRACT This paper utilizes the maximum entropy model to calculate discharges in pipes. The proposed model requires the flow velocities to be gauged in just two positions along the pipe radius to calculate the discharge of any given pipe with circular cross-section regardless its diameter size. A g...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT This paper utilizes the maximum entropy model to calculate discharges in pipes. The proposed model requires the flow velocities to be gauged in just two positions along the pipe radius to calculate the discharge of any given pipe with circular cross-section regardless its diameter size. A genetic algorithm is used to determine the two parameters of the entropy equation for pipe flow. Three water mains are assessed. The discharge values achieved by the maximum entropy model coupled to the genetic algorithm for two water mains are compared to those achieved by a calibrated AquaProbe ABB electromagnetic flow meter and remain within the device accuracy (± 2%), as reported by its manufacturer. A Cole type Pitot tube in series with a Venturi tube are used to respectively define three velocity profiles and gauge three different discharges for the third water main. The three discharge values obtained by the maximum entropy model are compared to the ones obtained by the Venturi tube and remain within the presented uncertainties (3.3%, 3.1% and 2.8%) for each discharge gauged by the Venturi tube. The discharge calculation in any given pipe is facilitated by the presented method. |
---|---|
DOI: | 10.6084/m9.figshare.6387995 |