Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6
Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in a...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Bild |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chun-Chi Liu Chin-Chung Lin Ker-Chau Li Wen-Shyen E Chen Jiun-Ching Chen Ming-Te Yang Pan-Chyr Yang Pei-Chun Chang Chen, Jeremy JW |
description | Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in an N-mer oligo, and the count of the solid triangles is the number of unique subsequences. Thus, the M-mer can be calculated from the number of unique subsequences. () ANN training: there were 17 input nodes in the ANN for the input vector (10-mer ~ 26-mer ) that is calculated in (a). In addition, the cross homology identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the parameters needed for other components to work properly. () IAB algorithm architecture: for each sliding N-mer oligo, the input vector (10-mer ~ 26-mer ) calculated by the unique maker database (UMD) was delivered to the ANN for cross homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores. |
doi_str_mv | 10.6084/m9.figshare.57492 |
format | Image |
fullrecord | <record><control><sourceid>datacite_PQ8</sourceid><recordid>TN_cdi_datacite_primary_10_6084_m9_figshare_57492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_6084_m9_figshare_57492</sourcerecordid><originalsourceid>FETCH-datacite_primary_10_6084_m9_figshare_574923</originalsourceid><addsrcrecordid>eNqdj0sOwjAMRLNhgYADsPMFWloon64RnwOwj6zULRZNUiWpEBKHJ63gAiyske3xWE-IZZ6lu-xQrHSZ1tz4OzpKt_uiXE_F-0LGakqeXBHEMoFrVhjYGrA1-I7UMADbcmNNr1qyIdo89J5NA-hGP2MLhno3Snha9wA0FSiruz6MYXHTDJ9iFMbm5dknu7mY1Nh6Wnx1JvLz6Xa8JhUGVBxIdo41upfMMzkQSF3KH4EcCTb_3HwAGdhcmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>image</recordtype></control><display><type>image</type><title>Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6</title><source>DataCite</source><creator>Chun-Chi Liu ; Chin-Chung Lin ; Ker-Chau Li ; Wen-Shyen E Chen ; Jiun-Ching Chen ; Ming-Te Yang ; Pan-Chyr Yang ; Pei-Chun Chang ; Chen, Jeremy JW</creator><creatorcontrib>Chun-Chi Liu ; Chin-Chung Lin ; Ker-Chau Li ; Wen-Shyen E Chen ; Jiun-Ching Chen ; Ming-Te Yang ; Pan-Chyr Yang ; Pei-Chun Chang ; Chen, Jeremy JW</creatorcontrib><description>Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in an N-mer oligo, and the count of the solid triangles is the number of unique subsequences. Thus, the M-mer can be calculated from the number of unique subsequences. () ANN training: there were 17 input nodes in the ANN for the input vector (10-mer ~ 26-mer ) that is calculated in (a). In addition, the cross homology identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the parameters needed for other components to work properly. () IAB algorithm architecture: for each sliding N-mer oligo, the input vector (10-mer ~ 26-mer ) calculated by the unique maker database (UMD) was delivered to the ANN for cross homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores.</description><identifier>DOI: 10.6084/m9.figshare.57492</identifier><language>eng</language><publisher>figshare</publisher><subject>FOS: Biological sciences ; Genetics</subject><creationdate>2011</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,1890</link.rule.ids><linktorsrc>$$Uhttps://commons.datacite.org/doi.org/10.6084/m9.figshare.57492$$EView_record_in_DataCite.org$$FView_record_in_$$GDataCite.org$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chun-Chi Liu</creatorcontrib><creatorcontrib>Chin-Chung Lin</creatorcontrib><creatorcontrib>Ker-Chau Li</creatorcontrib><creatorcontrib>Wen-Shyen E Chen</creatorcontrib><creatorcontrib>Jiun-Ching Chen</creatorcontrib><creatorcontrib>Ming-Te Yang</creatorcontrib><creatorcontrib>Pan-Chyr Yang</creatorcontrib><creatorcontrib>Pei-Chun Chang</creatorcontrib><creatorcontrib>Chen, Jeremy JW</creatorcontrib><title>Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6</title><description>Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in an N-mer oligo, and the count of the solid triangles is the number of unique subsequences. Thus, the M-mer can be calculated from the number of unique subsequences. () ANN training: there were 17 input nodes in the ANN for the input vector (10-mer ~ 26-mer ) that is calculated in (a). In addition, the cross homology identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the parameters needed for other components to work properly. () IAB algorithm architecture: for each sliding N-mer oligo, the input vector (10-mer ~ 26-mer ) calculated by the unique maker database (UMD) was delivered to the ANN for cross homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores.</description><subject>FOS: Biological sciences</subject><subject>Genetics</subject><fulltext>true</fulltext><rsrctype>image</rsrctype><creationdate>2011</creationdate><recordtype>image</recordtype><sourceid>PQ8</sourceid><recordid>eNqdj0sOwjAMRLNhgYADsPMFWloon64RnwOwj6zULRZNUiWpEBKHJ63gAiyske3xWE-IZZ6lu-xQrHSZ1tz4OzpKt_uiXE_F-0LGakqeXBHEMoFrVhjYGrA1-I7UMADbcmNNr1qyIdo89J5NA-hGP2MLhno3Snha9wA0FSiruz6MYXHTDJ9iFMbm5dknu7mY1Nh6Wnx1JvLz6Xa8JhUGVBxIdo41upfMMzkQSF3KH4EcCTb_3HwAGdhcmA</recordid><startdate>20111231</startdate><enddate>20111231</enddate><creator>Chun-Chi Liu</creator><creator>Chin-Chung Lin</creator><creator>Ker-Chau Li</creator><creator>Wen-Shyen E Chen</creator><creator>Jiun-Ching Chen</creator><creator>Ming-Te Yang</creator><creator>Pan-Chyr Yang</creator><creator>Pei-Chun Chang</creator><creator>Chen, Jeremy JW</creator><general>figshare</general><scope>DYCCY</scope><scope>PQ8</scope></search><sort><creationdate>20111231</creationdate><title>Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6</title><author>Chun-Chi Liu ; Chin-Chung Lin ; Ker-Chau Li ; Wen-Shyen E Chen ; Jiun-Ching Chen ; Ming-Te Yang ; Pan-Chyr Yang ; Pei-Chun Chang ; Chen, Jeremy JW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-datacite_primary_10_6084_m9_figshare_574923</frbrgroupid><rsrctype>images</rsrctype><prefilter>images</prefilter><language>eng</language><creationdate>2011</creationdate><topic>FOS: Biological sciences</topic><topic>Genetics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chun-Chi Liu</creatorcontrib><creatorcontrib>Chin-Chung Lin</creatorcontrib><creatorcontrib>Ker-Chau Li</creatorcontrib><creatorcontrib>Wen-Shyen E Chen</creatorcontrib><creatorcontrib>Jiun-Ching Chen</creatorcontrib><creatorcontrib>Ming-Te Yang</creatorcontrib><creatorcontrib>Pan-Chyr Yang</creatorcontrib><creatorcontrib>Pei-Chun Chang</creatorcontrib><creatorcontrib>Chen, Jeremy JW</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chun-Chi Liu</au><au>Chin-Chung Lin</au><au>Ker-Chau Li</au><au>Wen-Shyen E Chen</au><au>Jiun-Ching Chen</au><au>Ming-Te Yang</au><au>Pan-Chyr Yang</au><au>Pei-Chun Chang</au><au>Chen, Jeremy JW</au><format>book</format><genre>unknown</genre><ristype>GEN</ristype><title>Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6</title><date>2011-12-31</date><risdate>2011</risdate><abstract>Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in an N-mer oligo, and the count of the solid triangles is the number of unique subsequences. Thus, the M-mer can be calculated from the number of unique subsequences. () ANN training: there were 17 input nodes in the ANN for the input vector (10-mer ~ 26-mer ) that is calculated in (a). In addition, the cross homology identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the parameters needed for other components to work properly. () IAB algorithm architecture: for each sliding N-mer oligo, the input vector (10-mer ~ 26-mer ) calculated by the unique maker database (UMD) was delivered to the ANN for cross homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores.</abstract><pub>figshare</pub><doi>10.6084/m9.figshare.57492</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | DOI: 10.6084/m9.figshare.57492 |
ispartof | |
issn | |
language | eng |
recordid | cdi_datacite_primary_10_6084_m9_figshare_57492 |
source | DataCite |
subjects | FOS: Biological sciences Genetics |
title | Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite_PQ8&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Chun-Chi%20Liu&rft.date=2011-12-31&rft_id=info:doi/10.6084/m9.figshare.57492&rft_dat=%3Cdatacite_PQ8%3E10_6084_m9_figshare_57492%3C/datacite_PQ8%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |