Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis-6

Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chun-Chi Liu, Chin-Chung Lin, Ker-Chau Li, Wen-Shyen E Chen, Jiun-Ching Chen, Ming-Te Yang, Pan-Chyr Yang, Pei-Chun Chang, Chen, Jeremy JW
Format: Bild
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copyright information:Taken from "Genome-wide identification of specific oligonucleotides using artificial neural network and computational genomic analysis"http://www.biomedcentral.com/1471-2105/8/164BMC Bioinformatics 2007;8():164-164.Published online 22 May 2007PMCID:PMC1892811.ces in an N-mer oligo, and the count of the solid triangles is the number of unique subsequences. Thus, the M-mer can be calculated from the number of unique subsequences. () ANN training: there were 17 input nodes in the ANN for the input vector (10-mer ~ 26-mer ) that is calculated in (a). In addition, the cross homology identified by WU-BLAST was as the desired output. The monitor object represents the central point that contains all of the parameters needed for other components to work properly. () IAB algorithm architecture: for each sliding N-mer oligo, the input vector (10-mer ~ 26-mer ) calculated by the unique maker database (UMD) was delivered to the ANN for cross homology prediction. The selected oligos were checked by BLAST after filtering by ANN scores.
DOI:10.6084/m9.figshare.57492