Supplementary Material for: Different Techniques of Respiratory Support Do Not Significantly Affect Gas Exchange during Cardiopulmonary Resuscitation in a Newborn Piglet Model
Background: There are no evidence-based recommendations on the use of different techniques of respiratory support and chest compressions (CC) during neonatal cardiopulmonary resuscitation (CPR). Objectives: We studied the short-term effects of different ventilatory support strategies along with CC r...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: There are no evidence-based recommendations on the use of different techniques of respiratory support and chest compressions (CC) during neonatal cardiopulmonary resuscitation (CPR). Objectives: We studied the short-term effects of different ventilatory support strategies along with CC representing clinical practice on gas exchange [arterial oxygen saturation (SaO2), arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2)], hemodynamics and cerebral oxygenation. We hypothesized that in newborn piglets with cardiac arrest, use of a T-piece resuscitator (TPR) providing positive end-expiratory pressure (PEEP) improves gas exchange as measured by SaO2 during CPR as compared to using a self-inflating bag (SIB) without PEEP. Furthermore, we explored the effects of a mechanical ventilator without synchrony to CC. Methods: Thirty newborn piglets with asystole were randomized into three groups and resuscitated for 20 min [fraction of inspired oxygen (FiO2) = 0.21 for 10 min and 1.0 thereafter]. Group 1 received ventilation using a TPR [peak inspiratory pressure (PIP)/PEEP of 20/5 cm H2O, rate 30/min] with inflations interposed between CC (3:1 ratio). Group 2 received ventilation using a SIB (PIP of 20 cm H2O without PEEP, rate 30/min) with inflations interposed between CC (3:1 ratio). Group 3 received ventilation using a mechanical ventilator (PIP/PEEP of 20/5 cm H2O, rate 30/min). CC were applied with a rate of 120/min without synchrony to inflations. Results: We found no significant differences in SaO2 between the three groups. However, there was a trend toward a higher SaO2 [TPR: 28.0% (22.3-40.0); SIB: 23.7% (13.4-52.3); ventilator: 44.1% (39.2-54.3); median (interquartile range)] and a lower PaCO2 [TPR: 95.6 mm Hg (82.1-113.6); SIB: 100.8 mm Hg (83.0-108.0); ventilator: 74.1 mm Hg (68.5-83.1); median (interquartile range)] in the mechanical ventilator group. Conclusions: We found no significant effect on gas exchange using different respiratory support strategies during CPR. |
---|---|
DOI: | 10.6084/m9.figshare.5127853 |