Supplementary Material for: A Method for Generating Selective DNA Probes for the Analysis of C-Negative Regions in Human Chromosomes

Linker-adapter polymerase chain reaction (LA-PCR) is among the most efficient techniques for whole genome DNA amplification. The key stage in LA-PCR is the hydrolysis of a DNA sample with restriction endonucleases, and the choice of a restriction endonuclease (or several endonucleases) determines th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morozkin, E.S., Loseva, E.M., Karamysheva, T.V., Babenko, V.N., Laktionov, P.P., Vlassov, V.V., Rubtsov, N.B.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linker-adapter polymerase chain reaction (LA-PCR) is among the most efficient techniques for whole genome DNA amplification. The key stage in LA-PCR is the hydrolysis of a DNA sample with restriction endonucleases, and the choice of a restriction endonuclease (or several endonucleases) determines the composition of DNA probes generated in LA-PCR. Computer analysis of the localization of the restriction sites in human genome has allowed us to propose an efficient technique for generating DNA probes by LA-PCR using the restriction endonucleases HaeIII and RsaI. In silico hydrolysis of human genomic DNA with endonucleases HaeIII and RsaI demonstrate that 100- to 1,000-bp DNA fragments are more abundant in the gene-rich regions. Applying in situ hybridization to metaphase chromosomes, we demonstrated that the produced DNA probes predominantly hybridized to the C-negative chromosomal regions, whereas the FISH signal was almost absent in the C-positive regions. The described protocol for generating DNA probes may be successfully used in subsequent cytogenetic analysis of the C-negative chromosomal regions.
DOI:10.6084/m9.figshare.5122642