Supplementary Material for: A Novel Approach of Synthesizing and Evaluating the Anticancer Potential of Silver Oxide Nanoparticles in vitro

Background: Development of novel strategies to kill cancer by sparing normal cells is of utmost importance. Apart from their known antimicrobial activity, only limited information has been recorded regarding the antitumor potential of biocompatible silver oxide nanoparticles (AgONPs). There is a nee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Banerjee, K., Das, S., Choudhury, P., Ghosh, S., Baral, R., Choudhuri, S.K.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Development of novel strategies to kill cancer by sparing normal cells is of utmost importance. Apart from their known antimicrobial activity, only limited information has been recorded regarding the antitumor potential of biocompatible silver oxide nanoparticles (AgONPs). There is a need to evaluate the anticancer potential of biocompatible AgONPs in vitro. Methods: A new approach of utilizing the leaf extract of Excoecaria agallocha was used to synthesize AgONPs. This was then characterized by ultraviolet-visible spectrophotometry, nanoparticle-tracking analysis, and ζ-potential analysis. Cytotoxicity and apoptotic potential were evaluated with an MTT assay and an annexin V-binding assay against the murine melanoma (B16F10), murine colon cancer (CT26), murine lung adenocarcinoma (3LL), and murine Ehrlich ascites carcinoma (EAC) cell lines. Cellular localization of AgONPs was evaluated on fluorescence microscopy. Results: UV peaks at 270 and 330 nm indicated the formation of nanoparticles (NPs) and the NP-tracking analyzer revealed them to have a size of 228 nm. AgONPs exerted initial cytotoxicity, specifically against all the experimental malignant cells by sparing the normal cell lines. Moreover, AgONPs exert apoptosis equally on all the malignant cells in vitro and ex vivo. This cytotoxicity possibly occurs via the nuclear translocation of AgONPs as analyzed in B16F10 cells. Conclusions: AgONPs utilizing natural sources would be a new medicinal approach against a broad spectrum of malignancy.
DOI:10.6084/m9.figshare.4990445