Argon extraction from geological samples by CO2 scanning laser step-heating
Lasers are fundamental tools for sampling in geochemical studies and have found wide application in mass spectrometric sample introduction systems. Here we describe an isotope extraction method for 40Ar/39Ar geochronology using a new scanning CO2 laser system. This method can partially un-mix radiog...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lasers are fundamental tools for sampling in geochemical studies and have found wide application in mass spectrometric sample introduction systems. Here we describe an isotope extraction method for 40Ar/39Ar geochronology using a new scanning CO2 laser system. This method can partially un-mix radiogenic (40Ar*) from trapped argon components and provides an alternative to furnace step-heating methods. A key advantage of the laser scanning method developed at the Scottish Universities Environmental Research Centre (SUERC) is the ability to step-heat samples as large as 100 mg to fusion using low raster speeds, although care must be taken to avoid self-shielding of grains and proper laser targeting. The scanning laser extraction system has the potential for lower overall blanks and the ability to run blanks and calibrations between steps of a heating sequence. This provides better control on system performance and characterization during sample measurement and can result in improved data quality. |
---|---|
DOI: | 10.6084/m9.figshare.3453566 |