Dataset Collection and Generation for data dissemination in VANETs

Data Dissemination Protocol Based on Deep LearningWe propose a deep learning (DL) approach to enhance data dissemination in VANETs. Our methodology comprisesthe following key components (see Figure 1):1. Dataset Collection and Generation: Historical and real-time network data will be collected and,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ameur, BENNAOUI
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data Dissemination Protocol Based on Deep LearningWe propose a deep learning (DL) approach to enhance data dissemination in VANETs. Our methodology comprisesthe following key components (see Figure 1):1. Dataset Collection and Generation: Historical and real-time network data will be collected and, if necessary,augmented using appropriate generation techniques. This diverse dataset will include vehicular movement patterns,traffic density, and other relevant network and packet metrics.2. Deep Neural Network Model Training and Validation: A training and validation process will be employed to finetunethe selected deep neural network (DNN) architecture. Hyperparameter optimization and robust evaluationmetrics will ensure the model’s predictive accuracy and ability to generalize to dynamic VANET conditions.3. Integration with Dissemination Protocol using OMNeT++: The trained DNN model will be integrated into a datadissemination protocol designed specifically for VANETs. We will utilize the OMNeT++ network simulator tocreate a comprehensive experimental
DOI:10.6084/m9.figshare.25658208