STRIDE (Sensor Technologies for Road Insights and Driving Evaluation) Dataset

The dataset is a comprehensive collection of sensor data captured from various sources, including accelerometer, gyroscope, magnetometer, GPS, gravity sensor, orientation sensor, and sensors for measuring total acceleration, uncalibrated magnetometer readings, uncalibrated gyroscope readings, and un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khandakar, Amith, G. Michelson, David, Naznine, Mansura, Salam, Abdus, Nahiduzzaman, Md, Khan, Khaled, Suganthan, Ponnuthurai Nagaratnam, Arselene Ayari, Mohamed, Menouar, Hamid, Haider, Julfikar
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dataset is a comprehensive collection of sensor data captured from various sources, including accelerometer, gyroscope, magnetometer, GPS, gravity sensor, orientation sensor, and sensors for measuring total acceleration, uncalibrated magnetometer readings, uncalibrated gyroscope readings, and uncalibrated accelerometer readings. This diverse range of sensors has recorded a wide array of parameters, such as acceleration force, gravitational force, rate of rotation, raw acceleration data without bias compensation, magnetic field strength, uncompensated rate of rotation, and angles around the x, y, and z axes.Furthermore, the GPS sensor has captured data on bearing accuracy, speed accuracy, vertical precision, horizontal accuracy, vehicle speed, altitude, longitude, and latitude. This extensive collection of parameters ensures a comprehensive understanding of road conditions and various driving patterns.The dataset aims to promote collaboration, foster further exploration, and facilitate the development of innovative ideas in the field of intelligent transportation systems. By making this real-time data on road conditions available to the community, the dataset offers numerous benefits, including enhanced monitoring capabilities, improved safety, better infrastructure maintenance, optimized traffic management, and data-driven urban planning and decision-making.Driving Behavior│ ├───1. Aggressive│ ├───2. Aggressive│ ├───3. Standard│ ├───4. Standard│ └───5. Slow│ └───6. SlowRoad Anomalies├───1. Bump├───10. Pothole├───11. Pothole├───12. Pothole├───13. Pothole├───14. Pothole├───15. Pothole├───16. Pothole├───17. Pothole├───2. Bump├───3. Bump├───4. Bump├───5. Bump├───6. Bump├───7. Bump├───8. Bump└───9. BumpC:Driving Behavior1.1. AggressiveAccelerometer.csvAccelerometerUncalibrated.csvGravity.csvGyroscope.csvGyroscopeUncalibrated.csvLocation.csvMagnetometer.csvMagnetometerUncalibrated.csvMetadata.csvOrientation.csvTotalAcceleration.csv
DOI:10.6084/m9.figshare.25460755