QBLink-KG: QBLink Adapted to DBpedia Knowledge Graph

QBLink-KG is a modified version of QBLink, which is a high-quality benchmark for evaluating conversational understanding of Wikipedia content.QBLink consists of sequences of up to three hand-crafted queries, with responses being single-named entities that match the titles of Wikipedia articles.For t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zamiri, Mona, Qiang, Yao, Nikolaev, Fedor, Zhu, Dongxiao, Kotov, Alexander
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:QBLink-KG is a modified version of QBLink, which is a high-quality benchmark for evaluating conversational understanding of Wikipedia content.QBLink consists of sequences of up to three hand-crafted queries, with responses being single-named entities that match the titles of Wikipedia articles.For the QBLink-KG, the English subset of the DBpedia snapshot from September 2021 was used as the target Knowledge Graph. QBLink answers provided as the titles of Wikipedia infoboxes can be easily mapped to DBpedia entity URIs - if the corresponding entities are present in DBpedia - since DBpedia is constructed through the extraction of information from Wikipedia infoboxes.QBLink, in its original format, is not directly applicable for Conversational Entity Retrieval from a Knowledge Graph (CER-KG) because knowledge graphs contain considerably less information than Wikipedia. A named entity serving as an answer to a QBLink query may not be present as an entity in DBpedia. To modify QBLink for CER over DBpedia, we implemented two filtering steps: 1) we removed all queries for which the wiki_page field is empty, or the answer cannot be mapped to a DBpedia entity or does not match to a Wikipedia page. 2) For the evaluation of a model with specific techniques for entity linking and candidate selection, we excluded queries with answers that do not belong to the set of candidate entities derived using that model.The original QBLink dataset files before filtering are:QBLink-train.jsonQBLink-dev.jsonQBLink-test.jsonAnd the final QBLink-KG files after filtering are:QBLink-Filtered-train.jsonQBLink-Filtered-dev.jsonQBLink-Filtered-test.jsonWe used below references to construct QBLink-KG:Ahmed Elgohary, Chen Zhao, and Jordan Boyd-Graber. 2018. A dataset and baselines for sequential open-domain question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1077–1083, Brussels, Belgium. Association for Computational Linguistics.https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-09Lehmann, Jens et al. ‘DBpedia – A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia’. 1 Jan. 2015 : 167 – 195.To give more details about QBLink-KG, please read our research paper:Zamiri, Mona, et al. "Benchmark and Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph", The Web Conference 2024.
DOI:10.6084/m9.figshare.25256290