In silico designing a novel TLR4-mediating multiepitope vaccine against monkeypox via advanced immunoinformatics and bioinformatics approaches

Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lahimchi, Mohammad Reza, Madanchi, Hamid, Ahmadi, Khadijeh, Shahbazi, Behzad, Yousefi, Bahman
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bioinformatics, molecular docking, and gene cloning approaches to design a novel multiepitope vaccine against monkeypox. Three immunogenic envelope proteins of monkeypox virus, including G10R, E8L, and A30L, were selected to predict appropriate immune system stimulator epitopes. The A30L is common between smallpox and monkeypox virus, so the proposed vaccine may be effective against smallpox too. There is no evidence of allergenicity and toxicity of the vaccine epitopes. To boost the immunogenicity of the designed vaccine, we used the helper epitope of PADRE and RS01as adjuvants. Furthermore, some linkers are used to link epitopes and adjuvants together. The physicochemical futures of the designed vaccine were assessed. The tertiary structure of the vaccine was modeled and then refined to improve its structure and physicochemical properties. To analyze the vaccine construct and TLR4 complex affinity, they were docked to gather. Besides, the vaccine was cloned into E.coli. pET-21b(+) plasmid to reveal that it can be expressed and stimulate the immune system. Immune stimulation evaluation showed that the candidate vaccine could induce the production of IgM, IgG1, and IgG2 antibodies. Overall, we suggested an effective vaccine candidate against monkeypox. However, Future studies and clinical trials should be done to ensure the efficacy and safety of this vaccine. Communicated by Ramaswamy H. Sarma
DOI:10.6084/m9.figshare.22731199