Paradoxical effect of Aβ on protein levels of ABCA1 in astrocytes, microglia, and neurons isolated from C57BL/6 mice: an in vitro and in silico study to elucidate the effect of Aβ on ABCA1 in the brain cells

Impaired cholesterol metabolism has been reported in Alzheimer’s disease. Since ABCA1 is one of the main players in the brain’s cholesterol homeostasis, here we used the in-vitro and in-silico experiments to investigate the effect of Aβ on ABCA1 protein levels in microglia, astrocytes, and neurons i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zarezade, Vahid, Nazeri, Zahra, Azizidoost, Shirin, Cheraghzadeh, Maryam, Babaahmadi-Rezaei, Hossein, Kheirollah, Alireza
Format: Video
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Impaired cholesterol metabolism has been reported in Alzheimer’s disease. Since ABCA1 is one of the main players in the brain’s cholesterol homeostasis, here we used the in-vitro and in-silico experiments to investigate the effect of Aβ on ABCA1 protein levels in microglia, astrocytes, and neurons in mice. Microglia, astrocytes, and neurons were cultured and exposed to beta amyloid. ABCA1 in cell lysates was determined by Western blotting, and cholesterol efflux was measured in the conditioned media. Molecular docking, molecular dynamics simulations, and MM-GBSA analysis were conducted to gain a better understanding of the effects of Aβ on ABCA1. In response to Aβ, the protein levels of ABCA1 increase significantly in microglia, astrocytes, and neurons; however, its ability to enhance cholesterol efflux is diminished. Aβ inhibited the function of ABCA1 by obstructing the extracellular tunnel that transports lipids outside the cell, as determined by molecular docking. MD simulation analysis validated these findings. Our results demonstrated that Aβ could increase ABCA1 protein levels in various brain cells, regardless of cell type. Molecular docking, molecular dynamics simulation, and MM-GBSA studies indicate that Aβ has a significant effect on the structural conformation of ABCA1, possibly interfering with its function. We believe that the conformational changes of ABCA1 will inhibit its ability to subsequently release cellular cholesterol. Aβ may obstruct the extracellular tunnel of ABCA1, rendering it less accessible to proteases such as the calpain family, which may explain the increase in ABCA1 levels but decrease in its function. Communicated by Ramaswamy H. Sarma
DOI:10.6084/m9.figshare.22714606