Reduced contextually induced muscle thermogenesis in rats with calorie restriction and lower aerobic fitness but not monogenic obesity

We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shemery, Ashley M., Zendlo, Meredith, Kowalski, Jesse, Gorrell, Erin, Everett, Scott, Wagner, Jacob G., Davis, Ashley E., Koch, Lauren G., Britton, Steven L., Mul, Joram D., Novak, Colleen M.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity propensity seen in association with low intrinsic aerobic fitness, and monogenic obesity. First, weight loss subsequent to 3 wk of 50% calorie restriction suppressed the muscle thermogenic response to predator odor. Next, we compared rats bred based on artificial selection for intrinsic aerobic fitness – high- and low-capacity runners (HCR, LCR) – that display robust leanness and obesity propensity, respectively. Aerobically fit HCR showed enhanced predator odor-induced muscle thermogenesis relative to the less-fit LCR. This contrasted with the profound monogenic obesity displayed by rats homozygous for a loss of function mutation in Melanocortin 4 receptor (Mc4rK3a,4X/K314X rats), which showed no discernable deficit in thermogenesis. Taken together, these data imply that body size or obesity per se are not associated with deficient muscle thermogenesis. Rather, the physiological phenotype associated with polygenic obesity propensity may encompass pleiotropic mechanisms in the thermogenic pathway. Adaptive thermogenesis associated with weight loss also likely alters muscle thermogenic mechanisms.
DOI:10.6084/m9.figshare.21967502