RDD2022 - The multi-national Road Damage Dataset released through CRDDC'2022

Description The Road Damage Dataset, RDD2022, is released as a part of the Crowdsensing-based Road Damage Detection Challenge (CRDDC'2022), an IEEE BigData Cup.  It comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China.  The imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arya, Deeksha, Maeda, Hiroya, Sekimoto, Yoshihide, Omata, Hiroshi, Ghosh, Sanjay Kumar, Toshniwal, Durga, Sharma, Madhavendra, Pham, Van Vung, Zhong, Jingtao, Al-Hammadi, Muneer, Shami, Mamoona Birkhez, Nguyen, Du, Cheng, Hanglin, Zhang, Jing, Klein-Paste, Alex, Mork, Helge, Lindseth, Frank, Seto, Toshikazu, Mraz, Alexander, Kashiyama, Takehiro
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Description The Road Damage Dataset, RDD2022, is released as a part of the Crowdsensing-based Road Damage Detection Challenge (CRDDC'2022), an IEEE BigData Cup.  It comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China.  The images have been annotated with more than 55,000 instances of road damage.  Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset.  Usage The annotated dataset is envisioned for developing deep learning-based methods to detect and classify road damage automatically.  The municipalities and road agencies may utilize the RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic monitoring of road conditions.  Further, computer vision and machine learning researchers may use the dataset to benchmark the performance of different algorithms for other image-based applications of the same type (classification, object detection, etc.).  For further details, please refer to the CRDDC'2022 resources.
DOI:10.6084/m9.figshare.21431547