Supplementary Material for: Cathelicidins Induce Toll-Interacting Protein Synthesis to Prevent Apoptosis in Colonic Epithelium
Cathelicidin peptides secreted by leukocytes and epithelial cells are microbicidal but also regulate pathogen sensing via toll-like receptors (TLRs) in the colon by mechanisms that are not fully understood. Herein, analyses with the attaching/effacing pathogen Citrobacter rodentium model of colitis...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cathelicidin peptides secreted by leukocytes and epithelial cells are microbicidal but also regulate pathogen sensing via toll-like receptors (TLRs) in the colon by mechanisms that are not fully understood. Herein, analyses with the attaching/effacing pathogen Citrobacter rodentium model of colitis in cathelicidin-deficient (Camp−/−) mice, and colonic epithelia demonstrate that cathelicidins prevent apoptosis by sustaining post-transcriptional synthesis of a TLR adapter, toll-interacting protein (TOLLIP). Cathelicidins induced phosphorylation-activation of epidermal growth factor receptor (EGFR)-kinase, which phosphorylated-inactivated miRNA-activating enzyme Argonaute 2 (AGO2), thus reducing availability of the TOLLIP repressor miRNA-31. Cathelicidins promoted stability of TOLLIP protein via a proteosome-dependent pathway. This cathelicidin-induced TOLLIP upregulation prevented apoptosis in the colonic epithelium by reducing levels of caspase-3 and poly (ADP-ribose) polymerase (PARP)-1 in response to the proinflammatory cytokines, interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Further, Camp−/− colonic epithelial cells were more susceptible to apoptosis during C. rodentium infection than wild-type cells. This antiapoptotic effect of cathelicidins, maintaining epithelial TOLLIP protein in the gut, provides insight into cathelicidin’s ability to regulate TLR signaling and prevent exacerbated inflammation. |
---|---|
DOI: | 10.6084/m9.figshare.21130130 |