Morpho-anatomical, physiological and biochemical changes in rubber tree seeds

ABSTRACT The physical, physiological and biochemical changes during the development until the dispersal of rubber tree seeds were evaluated with the purpose of estimating the point at physiological maturity. A total of 30 plants were selected at different points in a commercial planting area and had...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SOUZA, GENAINA A. DE, DIAS, DENISE C.F.S., PIMENTA, THALINE M., CARDOSO, AMANDA Á., PIRES, RAQUEL M.O., ALVARENGA, ANTÔNIO P., PÍCOLI, EDGARD A.T.
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The physical, physiological and biochemical changes during the development until the dispersal of rubber tree seeds were evaluated with the purpose of estimating the point at physiological maturity. A total of 30 plants were selected at different points in a commercial planting area and had their flowers marked during the anthesis and every 15 days after marking. Fruits and seeds were collected for analysis of moisture content, dry matter, diameter and length. Details of the anatomy ultra-structure of the seeds were evaluated. The seed emergence, emergency speed index, heat resistant proteins and oxidative stress enzymes were examined. It was observed that fruits reached maximum size at 120 days after anthesis and seeds at 150 days. The seeds acquired germination capacity after 150 days. At 175 days, they presented the highest percentage of dry matter and lowest moisture, in addition to a higher percentage of germination and vigor. Therefore, it was possible to conclude that the physiological maturity of the rubber tree seeds occurs at 175 days after anthesis, and coincides with its maximum physiological quality. At 175 and 180 days post-anthesis, there is a greater expression of heat resistant proteins as well as low molecular weight and greater oxidative stress enzyme activity.
DOI:10.6084/m9.figshare.19924561