Additional file 2 of Large-scale discovery of novel neurodevelopmental disorder-related genes through a unified analysis of single-nucleotide and copy number variants
Additional file 2: Table S1. Summary of explaining and response variables in the regression analyses. Table S2. Summary of models for relative number of < 1 Mb LOF CNV per gene. Table S3. Mutation rate of < 1 Mb LOF CNV per gene. Table S4. Rare de novo variants in 1,317 YCU samples. Table S5....
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Additional file 2: Table S1. Summary of explaining and response variables in the regression analyses. Table S2. Summary of models for relative number of < 1 Mb LOF CNV per gene. Table S3. Mutation rate of < 1 Mb LOF CNV per gene. Table S4. Rare de novo variants in 1,317 YCU samples. Table S5. Calls of < 1 Mb rare de novo deletions in 1,298 YCU samples. Table S6. Calls of < 1 Mb rare de novo deletions in 2,377 SSC probands. Table S7. Results of DNM enrichment analyses in the DNM-enriched 381 genes including ATP6V0C. Table S8. DNMs at the 381 DNM-enriched genes including ATP6V0C. Table S9. Confidence and predicted pathomechanism of in the 52 new DNM-enriched genes. Table S10. TSEA of the 328 known and 34 plausible candidate genes. Table S11. Enrichment analyses of genes specifically expressed in various brain regions and developmental stages in the 328 known and 34 plausible candidate genes. Table S12. Enrichment analyses of genes specifically expressed in co-expression modules in the 328 known and 34 plausible candidate genes. Table S13. Enrichment analyses of GO terms in the 328 known and 34 plausible candidate genes. Table S14. Enrichment analyses of proteins of STRING clusters in the proteins encoded by the 328 known and 34 plausible candidate genes. Table S15. Inputs and results of deep learning analysis. |
---|---|
DOI: | 10.6084/m9.figshare.19656872 |