A novel role for nucleolin in splice site selection

Latent 5ʹ splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shefer, Kinneret, Boulos, Ayub, Gotea, Valer, Arafat, Maram, Chaim, Yair Ben, Muharram, Aya, Isaac, Sara, Eden, Amir, Sperling, Joseph, Elnitski, Laura, Sperling, Ruth
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Latent 5ʹ splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRNA independent of protein translation. To further elucidate this mechanism, we searched for nuclear proteins directly bound to initiator-tRNA. Starting with UV-crosslinking, we identified nucleolin (NCL) interacting directly and specifically with initiator-tRNA in the nucleus, but not in the cytoplasm. Next, we show the association of initiator-tRNA and NCL with pre-mRNA. We further show that recovery of suppression of latent splicing by initiator-tRNA complementation is NCL dependent. Finally, upon nucleolin knockdown we show activation of latent splicing in hundreds of coding transcripts having important cellular functions. We thus propose nucleolin, a component of the endogenous spliceosome, through its direct binding to initiator-tRNA and its effect on latent splicing, as the first protein of a nuclear quality control mechanism regulating splice site selection to protect cells from latent splicing that can generate defective mRNAs.
DOI:10.6084/m9.figshare.19245933