Serological proteome analysis reveals new specific biases in the IgM and IgG autoantibody repertoires in autoimmune polyendocrine syndrome type 1
Objective: Autoimmune polyendocrine syndrome type 1 (APS 1) is caused by mutations in the AIRE gene that induce intrathymic T-cell tolerance breakdown, which results in tissue-specific autoimmune diseases. Design: To evaluate the effect of a well-defined T-cell repertoire impairment on humoral self-...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: Autoimmune polyendocrine syndrome type 1 (APS 1) is caused by mutations in the AIRE gene that induce intrathymic T-cell tolerance breakdown, which results in tissue-specific autoimmune diseases. Design: To evaluate the effect of a well-defined T-cell repertoire impairment on humoral self-reactive fingerprints, comparative serum self-IgG and self-IgM reactivities were analyzed using both one- and two-dimensional western blotting approaches against a broad spectrum of peripheral tissue antigens. Methods: Autoantibody patterns of APS 1 patients were compared with those of subjects affected by other autoimmune endocrinopathies (OAE) and healthy controls. Results: Using a Chi-square test, significant changes in the Ab repertoire were found when intergroup patterns were compared. A singular distortion of both serum self-IgG and self-IgM repertoires was noted in APS 1 patients. The molecular characterization of these antigenic targets was conducted using a proteomic approach. In this context, autoantibodies recognized more significantly either tissue-specific antigens, such as pancreatic amylase, pancreatic triacylglycerol lipase and pancreatic regenerating protein 1α, or widely distributed antigens, such as peroxiredoxin-2, heat shock cognate 71-kDa protein and aldose reductase. As expected, a well-defined self-reactive T-cell repertoire impairment, as described in APS 1 patients, affected the tissue-specific self-IgG repertoire. Interestingly, discriminant IgM reactivities targeting both tissue-specific and more widely expressed antigens were also specifically observed in APS 1 patients. Using recombinant targets, we observed that post translational modifications of these specific antigens impacted upon their recognition. Conclusions: The data suggest that T-cell-dependent but also T-cell-independent mechanisms are involved in the dynamic evolution of autoimmunity in APS 1. |
---|---|
DOI: | 10.6084/m9.figshare.1569746 |