Physical fractions of organic matter and mineralizable soil carbon in forest fragments of the Atlantic Forest
Abstract This study determined the physical granulometric fractionation evaluated the mineralizable carbon within and around forest fragments of the Atlantic Forest biome located in the state of Paraná. Soil samples were collected at three three internal points of the fragments: the edge (E), the ha...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract This study determined the physical granulometric fractionation evaluated the mineralizable carbon within and around forest fragments of the Atlantic Forest biome located in the state of Paraná. Soil samples were collected at three three internal points of the fragments: the edge (E), the half radius (HR) and the center (CF); and one point in no-tillage system (NTS) areas around the fragments, in four replicates. The contents of total organic carbon (TOC), particulate fraction carbon (C-POM) and mineral fraction (C-MOM) were determined, and the %POM and %MOM and the stocks of POM (StockPOM) and MOM (StockMOM) were calculated, in addition to the indices: carbon stock index (CSI), lability (L), lability index (LI) and carbon management index (CMI), also evaluating CO2 emission, daily and accumulated. The highest TOC levels were observed in the CF point. The highest C-POM contents were observed in the E and CF points of fragment 1, in the CF point of fragment 2, and the highest C-MOM contents were expressed in the CF points of both fragments. CMI showed a distinct pattern among the fragments. The NTS areas showed lower C-CO2 emissions, with 39.8% and 28.3% less total emission compared to CF. The results of physical granulometric fractionation show the CF point favors the quality of SOM and the mineralizable carbon analysis indicated that the conversion of native areas into NTS compromises soil microbial activity. |
---|---|
DOI: | 10.6084/m9.figshare.14290566 |