Supplemental Material | Human-level Ordinal Maintainability Prediction Based on Static Code Metrics
Supplemental Material for the paper Markus Schnappinger, Arnaud Fietzke, and Alexander Pretschner. 2021. Human-level Ordinal Maintainability Prediction Based on Static Code Metrics. In Evaluation and Assessment in Software Engineering (EASE 2021). Association for Computing Machinery, New York, NY, U...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supplemental Material for the paper Markus Schnappinger, Arnaud Fietzke, and Alexander Pretschner. 2021. Human-level Ordinal Maintainability Prediction Based on Static Code Metrics. In Evaluation and Assessment in Software Engineering (EASE 2021). Association for Computing Machinery, New York, NY, USA, 160–169. DOI: https://doi.org/10.1145/3463274.3463315Contents:- Complete list of all static metrics and used tools in metrics.md- Complete list of features ranked by their importance ranking (Table 2 in the paper) in ranking.csv- Exact configurations, i.e. hyper-parameters, preprocessing, selected features, used to achieve the reported results (Table 3 in the paper) in configurations.csv |
---|---|
DOI: | 10.6084/m9.figshare.14102843 |