Computationally validated SARS-CoV-2 CTL and HTL Multi-Patch vaccines, designed by reverse epitomics approach, show potential to cover large ethnically distributed human population worldwide
The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is responsible for the COVID-19 outbreak. The highly contagious COVID-19 disease has spread to 216 countries in less than six months. Though several vaccine candidates are being claimed, an effective vaccine is yet to come. A novel rev...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is responsible for the COVID-19 outbreak. The highly contagious COVID-19 disease has spread to 216 countries in less than six months. Though several vaccine candidates are being claimed, an effective vaccine is yet to come. A novel reverse epitomics approach, ‘overlapping-epitope-clusters-to-patches’ method is utilized to identify the antigenic regions from the SARS-CoV-2 proteome. These antigenic regions are named as ‘Ag-Patch or Ag-Patches’, for Antigenic Patch or Patches. The identification of Ag-Patches is based on the clusters of overlapping epitopes rising from SARS-CoV-2 proteins. Further, we have utilized the identified Ag-Patches to design Multi-Patch Vaccines (MPVs), proposing a novel method for the vaccine design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties and cDNA constructs. We identified 73 CTL (Cytotoxic T-Lymphocyte) and 49 HTL (Helper T-Lymphocyte) novel Ag-Patches from the proteome of SARS-CoV-2. The identified Ag-Patches utilized to design MPVs cover 768 overlapping epitopes targeting 55 different HLA alleles leading to 99.98% of world human population coverage. The MPVs and Toll-Like Receptor ectodomain complex shows stable complex formation tendency. Further, the cDNA analysis favors high expression of the MPVs constructs in a human cell line. We identified highly immunogenic novel Ag-Patches from the entire proteome of SARS CoV-2 by a novel reverse epitomics approach and utilized them to design MPVs. We conclude that the novel MPVs could be a highly potential novel approach to combat SARS-CoV-2, with greater effectiveness, high specificity and large human population coverage worldwide. Communicated by Ramaswamy H. Sarma |
---|---|
DOI: | 10.6084/m9.figshare.13200275 |