Tomato production as a function of aeration levels after subsurface drip irrigation
ABSTRACT After rain or irrigation, the soil pores may present a low oxygen content (hypoxia). Soil aeration after irrigation has been used to overcome hypoxia-based problems. This study aimed to investigate the effect of four aeration levels (0, 0.5, 1.0 and 1.5 times the standard volume) applied af...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Dataset |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT After rain or irrigation, the soil pores may present a low oxygen content (hypoxia). Soil aeration after irrigation has been used to overcome hypoxia-based problems. This study aimed to investigate the effect of four aeration levels (0, 0.5, 1.0 and 1.5 times the standard volume) applied after irrigation, using a subsurface drip system, at two soil depths (0.15 m and 0.30 m). A randomized block design was used, in a 4 x 2 factorial scheme, with six replications. The yield characteristics assessed were: total fruit mass per plant, average fruit mass and number of fruits per plant. The growth characteristics were root and stem dry mass. The water-use efficiency was also calculated. The results indicated that the highest aeration level, at a depth of 0.30 m, increased the yield by 41.2 %, when compared with plants that received only irrigation, at the same depth. The water-use efficiency was influenced by the soil aeration after irrigation only at the depth of 0.30 m. |
---|---|
DOI: | 10.6084/m9.figshare.12094344 |