Water retention capacity in Arenosols and Ferralsols in a semiarid area in the state of Bahia, Brazil

One of the most serious problems in areas indicated for irrigation projects in the Brazilian Northeast region is the occurrence of sandy soils, known to have low moisture retention, but occurring in strategic locations in terms of water supply and geographical situation, and which can be used for ag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ROBERTO DA B.V. PARAHYBA, MARIA DO SOCORRO B. DE ARAÚJO, BRIVALDO G. DE ALMEIDA, FERNANDO C. ROLIM NETO, EVERARDO V.S.B. SAMPAIO, ANILDO M. CALDAS
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most serious problems in areas indicated for irrigation projects in the Brazilian Northeast region is the occurrence of sandy soils, known to have low moisture retention, but occurring in strategic locations in terms of water supply and geographical situation, and which can be used for agricultural purposes. The objective of this study was to evaluate the influence of particle size distribution and porosity on the water retention capacity of sandy soils in the semiarid area of the Northeast region. Soil bulk and particle densities, total porosity (macro, meso and microporosity), field capacity, permanent wilting point and soil-water retention curve were determined in samples of surface (A) and subsurface (C or Bw) horizons of ten sandy soil profiles. Particle size was determined subdividing the sand fraction into five classes. Higher amounts of the medium and fine sand fractions of the studied soils oriented their physical and hydric characteristics, being responsible for their great water retention. The arrangement of the fine silt, clay, fine sand and very fine sand particles may have provided a diversity of pore sizes and a good pore distribution, being responsible for the large proportion of micropores in the soils, allowing great water retention capacities.
DOI:10.6084/m9.figshare.11266082