Spatial representation of direct loss estimates on the residential building stock of Lima (Peru) from decoupled earthquake and tsunami scenarios on variable resolutions exposure models

This data repository contains the spatial distribution of the direct financial loss computed expected for the residential building stock of Metropolitan Lima (Peru) after the occurrence of six decoupled earthquake and tsunami risk scenarios (Gomez-Zapata et al., 2021a; Harig and Rakowsky, 2021). The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gomez-Zapata, Juan Camilo, Brinckmann, Nils, Pittore, Massimiliano, Cotton, Fabrice
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This data repository contains the spatial distribution of the direct financial loss computed expected for the residential building stock of Metropolitan Lima (Peru) after the occurrence of six decoupled earthquake and tsunami risk scenarios (Gomez-Zapata et al., 2021a; Harig and Rakowsky, 2021). These risk scenarios were independently calculated making use of the DEUS (Damage Exposure Update Service) available in https://github.com/gfzriesgos/deus. The reader can find documentation about this programme in (Brinckmann et al, 2021) where the input files required by DEUS and outputs are comprehensively described. Besides the spatially distributed hazard intensity measures (IM), other inputs required by DEUS to computed the decoupled risk loss estimates comprise: spatially aggregated building exposure models classified in every hazard-dependent scheme. Each class must be accompanied by their respective fragility functions, and financial consequence model (with loss ratios per involved damage state). The collection of inputs is presented in Gomez-Zapata et al. (2021b). The risk estimates are computed for each spatial aggregation areas of the exposure model. For such a purpose, the initial damage state of the buildings is upgraded from undamaged (D0) to any progressive damage state permissible by the fragility functions. The resultant outputs are spatially explicit .JSON files that use the same spatial aggregation boundaries of the initial building exposure models. An aggregated direct financial loss estimate is reported for each cell after every hazard scenario. It is reported one seismic risk loss distribution outcome for each of the 2000 seismic ground motion fields (GMF) per earthquake magnitude (Gomez-Zapata et al., 2021a). Therefore, 1000 seismic risk estimates from uncorrelated GMF are stored in “Clip_Mwi_uncorrelated” and 1000 seismic risk estimates from spatially cross-correlated GMF (using the model proposed by Markhvida et al. (2018)) are stored in “Clip_ Mwi_correlated”. It is worth noting that the prefix “clip” of these folders refers to the fact that, all of the seismic risk estimates were clipped with respect to the geocells were direct tsunami risk losses were obtained. This spatial compatibility in the losses obtained for similar areas and Mw allowed the construction of the boxplots that are presented in Figure 16 in Gomez-Zapata et al., (2021). The reader should note that folder “All_exposure_models_Clip_8.8_uncorrelated_and_correlated” also co
DOI:10.5880/riesgos.2021.009